633 research outputs found

    Novel SαS PDF approximations and their applications in wireless signal detection

    Get PDF
    Three new approximations to the probability density function (PDF) of the symmetric alpha stable (SαS) distribution are proposed. The first two approximations use rational functions while the third approximation uses power functions. Using these approximations, new detectors for signals in symmetric alpha stable noise are also derived. Numerical results show that all these new approximations have good accuracies. Numerical results also show that the new detectors based on these approximations outperform the existing detectors, especially when the characteristic exponent of the symmetric alpha stable distribution is small

    A Scalable Hybrid MAC Protocol for Massive M2M Networks

    Full text link
    In Machine to Machine (M2M) networks, a robust Medium Access Control (MAC) protocol is crucial to enable numerous machine-type devices to concurrently access the channel. Most literatures focus on developing simplex (reservation or contention based)MAC protocols which cannot provide a scalable solution for M2M networks with large number of devices. In this paper, a frame-based Hybrid MAC scheme, which consists of a contention period and a transmission period, is proposed for M2M networks. In the proposed scheme, the devices firstly contend the transmission opportunities during the contention period, only the successful devices will be assigned a time slot for transmission during the transmission period. To balance the tradeoff between the contention and transmission period in each frame, an optimization problem is formulated to maximize the system throughput by finding the optimal contending probability during contention period and optimal number of devices that can transmit during transmission period. A practical hybrid MAC protocol is designed to implement the proposed scheme. The analytical and simulation results demonstrate the effectiveness of the proposed Hybrid MAC protocol

    Game among Interdependent Networks: The Impact of Rationality on System Robustness

    Full text link
    Many real-world systems are composed of interdependent networks that rely on one another. Such networks are typically designed and operated by different entities, who aim at maximizing their own payoffs. There exists a game among these entities when designing their own networks. In this paper, we study the game investigating how the rational behaviors of entities impact the system robustness. We first introduce a mathematical model to quantify the interacting payoffs among varying entities. Then we study the Nash equilibrium of the game and compare it with the optimal social welfare. We reveal that the cooperation among different entities can be reached to maximize the social welfare in continuous game only when the average degree of each network is constant. Therefore, the huge gap between Nash equilibrium and optimal social welfare generally exists. The rationality of entities makes the system inherently deficient and even renders it extremely vulnerable in some cases. We analyze our model for two concrete systems with continuous strategy space and discrete strategy space, respectively. Furthermore, we uncover some factors (such as weakening coupled strength of interdependent networks, designing suitable topology dependency of the system) that help reduce the gap and the system vulnerability

    The Model Inversion Eavesdropping Attack in Semantic Communication Systems

    Full text link
    In recent years, semantic communication has been a popular research topic for its superiority in communication efficiency. As semantic communication relies on deep learning to extract meaning from raw messages, it is vulnerable to attacks targeting deep learning models. In this paper, we introduce the model inversion eavesdropping attack (MIEA) to reveal the risk of privacy leaks in the semantic communication system. In MIEA, the attacker first eavesdrops the signal being transmitted by the semantic communication system and then performs model inversion attack to reconstruct the raw message, where both the white-box and black-box settings are considered. Evaluation results show that MIEA can successfully reconstruct the raw message with good quality under different channel conditions. We then propose a defense method based on random permutation and substitution to defend against MIEA in order to achieve secure semantic communication. Our experimental results demonstrate the effectiveness of the proposed defense method in preventing MIEA.Comment: Accepted by 2023 IEEE Global Communications Conference (GLOBECOM
    • …
    corecore